You are here


Bluetooth Architecture

Bluetooth communication occurs between a master radio and a slave radio. Bluetooth radios are symmetric in that the same device may operate as a master and also the slave. Each radio has a 48-bit unique device address (BD_ADDR) that is fixed.

Two or more radio devices together form ad-hoc networks called piconets. All units within a piconet share the same channel. Each piconet has one master device and one or more slaves. There may be up to seven active slaves at a time within a piconet. Thus, each active device within a piconet is identifiable by a 3-bit active device address. Inactive slaves in unconnected modes may continue to reside within the piconet.

A master is the only one that may initiate a Bluetooth communication link. However, once a link is estBablished, the slave may request a master/slave switch to become the master. Slaves are not allowed to talk to each other directly. All communication occurs within the slave and the master. Slaves within a piconet must also synchronize their internal clocks and frequency hops with that of the master. Each piconet uses a different frequency hopping sequence. Radio devices used Time Division Multiplexing (TDM). A master device in a piconet transmits on even numbered slots and the slaves may transmit on odd numbered slots.

'Bluetooth Scatternets and Piconets'
Fig 1: Bluetooth Scatternets and Piconets

Multiple piconets with overlapping coverage areas form a scatternet. Each piconet may have only one master, but slaves may participate in different piconets on a time-division multiplex basis. A device may be a master in one piconet and a slave in another or a slave in more than one piconet.



Read on Kindle !